Mark Scheme 4755 January 2006

Section A

Section A					
1(i)	$2\mathbf{B} = \begin{pmatrix} 4 & -6 \\ 2 & 8 \end{pmatrix}, \mathbf{A} + \mathbf{C} \text{ is impossible,}$ $\mathbf{C}\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \\ 1 & 2 \end{pmatrix}, \mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 & 6 \\ 0 & -2 \end{pmatrix}$	B1 B1 M1, A1 B1	CA 3×2 matrix M1		
1(ii)	$\mathbf{AB} = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 11 & 0 \\ 4 & 5 \end{pmatrix}$ $\mathbf{BA} = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 8 & 11 \end{pmatrix}$ $\mathbf{AB} \neq \mathbf{BA}$	M1 E1	Or AC impossible, or student's own correct example. Allow M1 even if slip in multiplication Meaning of commutative		
		[2]	ivicaning of commutative		
2(i)	$ z = \sqrt{(a^2 + b^2)}, \ z^* = a - bj$	B1 B1 [2]			
2(ii)	$zz^* = (a+bj)(a-bj) = a^2 + b^2$	M1	Serious attempt to find zz^* , consistent with their z^*		
	$\Rightarrow zz^* - z ^2 = a^2 + b^2 - (a^2 + b^2) = 0$	M1 A1 [3]	ft their $ z $ in subtraction All correct		
3	$\sum_{r=1}^{n} (r+1)(r-1) = \sum_{r=1}^{n} (r^{2}-1)$	M1	Condone missing brackets		
	$= \frac{1}{6}n(n+1)(2n+1)-n$	M1, A1, A1	Attempt to use standard results Each part correct		
	$= \frac{1}{6}n[(n+1)(2n+1)-6]$ $= \frac{1}{6}n(2n^2+3n-5)$	M1	Attempt to collect terms with common denominator		
	$=\frac{1}{6}n(2n+5)(n-1)$	A1 [6]	c.a.o.		

4(i)	6x - 2y = a	B1	
	-3x + y = b	B1	
	·	[2]	
4(ii)			
	Determinant = 0	B1	
	The equations have no solutions or infinitely	E1	
	many solutions.	E1	No solution
			or infinitely many solutions Give E2 for 'no unique solution'
			s.c. 1: Determinant = 12, allow
			'unique solution' B0 E1 E0
			s.c. 2: Determinant = $\frac{1}{2}$ give
		[3]	0
5(i)	$\alpha + \beta + \gamma = -3$, $\alpha\beta + \beta\gamma + \gamma\alpha = -7$, $\alpha\beta\gamma = -1$	B2	maximum of B0 E1 Minus 1 each error to minimum
	$\alpha + \beta + \gamma = 3$, $\alpha \beta + \beta \gamma + \gamma \alpha = \gamma$, $\alpha \beta \gamma = 1$	[2]	of 0
5(ii)	Coefficients A , B and C		
	$2\alpha + 2\beta + 2\gamma = 2 \times -3 = -6 = \frac{-B}{A}$	3.54	
	$2\alpha + 2p + 2y = 2 \times -3 = -0 = \frac{-1}{A}$	M1	Attempt to use sums and
	$2\alpha \times 2\beta + 2\beta \times 2\gamma + 2\gamma \times 2\alpha = 4 \times -7 = -28 = \frac{C}{A}$		products of roots
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$2\alpha \times 2\beta \times 2\gamma = 8 \times -1 = -8 = \frac{-D}{A}$		
	71		
	$\Rightarrow x^3 + 6x^2 - 28x + 8 = 0$	A3	ft their coefficients, minus one
		AS	each error (including '= 0'
			missing), to minimum of 0
	OR	[4]	
	$\omega = 2x \Rightarrow x = \frac{\omega}{2}$	M1	Attempt at substitution
	2	A1	Correct substitution
	$\left(\frac{\omega}{2}\right)^3 + 3\left(\frac{\omega}{2}\right)^2 - 7\left(\frac{\omega}{2}\right) + 1 = 0$		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		A1	Substitute into cubic (ft)
	$\Rightarrow \frac{\omega^3}{8} + \frac{3\omega^2}{4} - \frac{7\omega}{2} + 1 = 0$		
	~ · -		
	$\Rightarrow \omega^3 + 6\omega^2 - 28\omega + 8 = 0$		
		A1	c.a.o.
		[4]	

6	$\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$		
	$n = 1$, LHS = RHS = $\frac{1}{2}$	B1	
	Assume true for $n = k$	E1	Assuming true for <i>k</i> (must be explicit)
	Next term is $\frac{1}{(k+1)(k+2)}$	B1	$(k+1)^{th}$ term seen c.a.o.
	Add to both sides $k = 1$		Add to $\frac{k}{k+1}$ (ft)
	RHS = $\frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$	M1	K + 1
	$=\frac{k(k+2)+1}{(k+1)(k+2)}$		
	$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$		
	$=\frac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}$		
	$=\frac{k+1}{k+2}$		c.a.o. with correct working
	But this is the given result with $k + 1$	A1	True for k , therefore true for $k + 1$
	replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is	E1	(dependent on $\frac{k+1}{k+2}$ seen)
	true for $k = 1, 2, 3$		Complee argument
		E1 [7]	

Section A Total: 36

	Section B		
7(i)	$3+x^2 \neq 0$ for any real x.	E1 [1]	
7(ii)	$y = -1, \ x = 2, \ x = -2$	B1, B1	
7(iii)		B1 [3]	
7(iv)	Large positive x , $y \rightarrow -1^{-}$ (e.g. consider $x = 100$) Large negative x , $y \rightarrow -1^{-}$ (e.g. consider $x = -100$)	M1 B1	Evidence of method required From below on each side c.a.o.
	Curve 3 branches correct Asymptotes labelled	B1 B1	Consistent with (i) and their (ii), (iii)
	Intercept labelled	B1	Consistent with (i) and their (ii), (iii) Labels may be on axes Lose 1 mark if graph not
	x=-2	[3]	symmetrical May be written in script
7(v)	y=-1		
	$\frac{3+x^2}{4-x^2} = -2 \Rightarrow 3+x^2 = -8+2x^2$ $\Rightarrow 11 = x^2$ $\Rightarrow x = (\pm)\sqrt{11}$	M1	
	From graph, $-\sqrt{11} \le x < -2$ or $2 < x \le \sqrt{11}$	A1	
		B1 A1	Reasonable attempt to solve
		[4]	
			Accept √11
			x < -2 and $2 < x$ seen c.a.o.

8(i)	$\alpha^{2} = (1 + j)^{2} = 2j$ $\alpha^{3} = (1 + j)2j = -2 + 2j$	M1, A1 A1	
8(ii) 8(iii)	$z^{3} + 3z^{2} + pz + q = 0$ $\Rightarrow 2j - 2 + 3 \times 2j + p(1+j) + q = 0$ $\Rightarrow (8+p)j + p + q - 2 = 0$ $p = -8 \text{ and } p + q - 2 = 0 \Rightarrow q = 10$ $1 - j \text{ must also be a root.}$ The roots must sum to -3, so the other root is $z = -5$	M1 M1 A1 [6] B1 M1 A1 [3]	Substitute their α^2 and α^3 into cubic Equate real and imaginary parts to 0 Results obtained correctly Any valid method c.a.o.
	Ima 1+j -5 Re	B2 [2]	Argand diagram with all three roots clearly shown; minus 1 for each error to minimum of 0 ft their real root

Section B (continued)			
9(i)	(25,50)	B1	
9(ii)	$\left(\frac{1}{2}y,y\right)$	[1] B1, B1	
9(iii)	<i>y</i> = 6	[2] B1	
		[1]	
9(iv)	All such lines are parallel to the <i>x</i> -axis.	B1 [1]	Or equivalent
9(v) 9(vi)	All such lines are parallel to $y = 2x$.	B1 [1]	Or equivalent
	$\begin{pmatrix} 0 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$	B3	Minus 1 each error s.c. Allow 1 for reasonable attempt but incorrect working
	$\det\begin{pmatrix} 0 & \frac{1}{2} \\ 0 & 1 \end{pmatrix} = 0 \times 1 - 0 \times \frac{1}{2} = 0$ Transformation many to one.	M1 E2 [3]	Attempt to show determinant = 0 or other valid argument May be awarded without previous M1 Allow E1 for 'transformation has no inverse' or other partial explanation
			Section B Total: 36
Total: 72			