Mark Scheme 4755
January 2006
Mark Scheme 4755
January 2006

 \\ \author{
\\ \title{
Janury
} \\
\title{ Janury }
\author{

 }
January 200
-

(

-
 \qquad
\qquad都

\square


```
都
```

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square
\qquad

Section A

\begin{tabular}{|c|c|c|c|}
\hline 1(i)

1(ii) \& \[
$$
\begin{aligned}
& 2 \mathbf{B}=\left(\begin{array}{ll}
4 & -6 \\
2 & 8
\end{array}\right), \mathbf{A}+\mathbf{C} \text { is impossible, } \\
& \mathbf{C A}=\left(\begin{array}{ll}
3 & 1 \\
2 & 4 \\
1 & 2
\end{array}\right), \mathbf{A}-\mathbf{B}=\left(\begin{array}{cc}
2 & 6 \\
0 & -2
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right)=\left(\begin{array}{cc}
11 & 0 \\
4 & 5
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
2 & -3 \\
1 & 4
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
5 & 0 \\
8 & 11
\end{array}\right) \\
& \mathbf{A B}=\mathbf{B A}
\end{aligned}
$$

\] \& | $\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1, A1 } \\ \text { B1 } \end{gathered}$ |
| :--- |
| [5] |
| M1 |
| E1 |
| [2] | \& | CA 3×2 matrix M1 |
| :--- |
| Or AC impossible, or student's own correct example. Allow M1 even if slip in multiplication |
| Meaning of commutative | \\

\hline $$
2(\mathbf{i})
$$

2(ii) \& $$
|z|=\sqrt{\left(a^{2}+b^{2}\right)}, z^{*}=a-b \mathrm{j}
$$

$$
z z^{*}=(a+b j)(a-b j)=a^{2}+b^{2}
$$

$$
\Rightarrow z z^{*}-|z|^{2}=a^{2}+b^{2}-\left(a^{2}+b^{2}\right)=0
$$ \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
{ }_{[2]} \\
\text { M1 } \\
\\
{ }^{\text {A1 }} \begin{array}{l}
\\
\quad[3]
\end{array}
\end{gathered}
$$

\] \& | Serious attempt to find $z z^{*}$, consistent with their z^{*} |
| :--- |
| ft their $\|z\|$ in subtraction |
| All correct | \\

\hline 3 \& $$
\begin{aligned}
& \sum_{r=1}^{n}(r+1)(r-1)=\sum_{r=1}^{n}\left(r^{2}-1\right) \\
& =\frac{1}{6} n(n+1)(2 n+1)-n \\
& =\frac{1}{6} n[(n+1)(2 n+1)-6] \\
& =\frac{1}{6} n\left(2 n^{2}+3 n-5\right) \\
& =\frac{1}{6} n(2 n+5)(n-1)
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { M1, } \\
\text { A1, A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | Condone missing brackets |
| :--- |
| Attempt to use standard results Each part correct |
| Attempt to collect terms with common denominator |
| c.a.o. | \\

\hline
\end{tabular}

4(i) 4(ii)	$\begin{aligned} & 6 x-2 y=a \\ & -3 x+y=b \end{aligned}$ Determinant $=0$ The equations have no solutions or infinitely many solutions.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { [2] } \\ & \text { B1 } \\ & \text { E1 } \\ & \text { E1 } \\ & \\ & \\ & \\ & {[3]} \end{aligned}$	No solution or infinitely many solutions Give E2 for 'no unique solution' s.c. 1: Determinant $=12$, allow 'unique solution' B0 E1 E0 s.c. 2: Determinant $=\frac{1}{0}$ give maximum of B0 E1
	$\alpha+\beta+\gamma=-3, \alpha \beta+\beta \gamma+\gamma \alpha=-7, \alpha \beta \gamma=-1$ Coefficients A, B and C $\begin{aligned} & 2 \alpha+2 \beta+2 \gamma=2 \times-3=-6=\frac{-B}{A} \\ & 2 \alpha \times 2 \beta+2 \beta \times 2 \gamma+2 \gamma \times 2 \alpha=4 \times-7=-28=\frac{C}{A} \\ & 2 \alpha \times 2 \beta \times 2 \gamma=8 \times-1=-8=\frac{-D}{A} \\ & \Rightarrow x^{3}+6 x^{2}-28 x+8=0 \end{aligned}$ OR $\begin{aligned} & \omega=2 x \Rightarrow x=\frac{\omega}{2} \\ & \left(\frac{\omega}{2}\right)^{3}+3\left(\frac{\omega}{2}\right)^{2}-7\left(\frac{\omega}{2}\right)+1=0 \\ & \Rightarrow \frac{\omega^{3}}{8}+\frac{3 \omega^{2}}{4}-\frac{7 \omega}{2}+1=0 \\ & \Rightarrow \omega^{3}+6 \omega^{2}-28 \omega+8=0 \end{aligned}$	B2 [2] M1 A3 [4] M1 A1 A1 A1 [4]	Minus 1 each error to minimum of 0 Attempt to use sums and products of roots ft their coefficients, minus one each error (including ' $=0$ ' missing), to minimum of 0 Attempt at substitution Correct substitution Substitute into cubic (ft) c.a.o.

6 | | $\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}$ |
| :--- | :--- |
| $n=1$, LHS $=$ RHS $=\frac{1}{2}$ | |

Assume true for $n=k$
Next term is $\frac{1}{(k+1)(k+2)}$
Add to both sides
RHS $=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$
$=\frac{k(k+2)+1}{(k+1)(k+2)}$
$=\frac{k^{2}+2 k+1}{(k+1)(k+2)}$
$=\frac{(k+1)^{2}}{(k+1)(k+2)}$
$=\frac{k+1}{k+2}$
But this is the given result with $k+1$
replacing k. Therefore if it is true for k it is
true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$

B1

E1

B1

E1

E1

Assuming true for k (must be explicit) $(k+1)^{\text {th }}$ term seen c.a.o.

Add to $\frac{k}{k+1}$
c.a.o. with correct working

True for k, therefore true for $k+1$ (dependent on $\frac{k+1}{k+2}$ seen)
Complee argument

B1	
E1	Assuming true for k (must be explicit) $(k+1)^{\text {th }}$ term seen c.a.o.
B1	Add to $\frac{k}{k+1}(\mathrm{ft})$
M1	c.a.o. with correct working
A1	True for k, therefore true for $k+1$ (dependent on $\frac{k+1}{k+2}$ seen)
E1	Complee argument
E1	
[7]	

8(i)	$\begin{aligned} & \alpha^{2}=(1+\mathrm{j})^{2}=2 \mathrm{j} \\ & \alpha^{3}=(1+\mathrm{j}) 2 \mathrm{j}=-2+2 \mathrm{j} \end{aligned}$	$\begin{array}{\|c} \text { M1, A1 } \\ \text { A1 } \end{array}$	
	$\begin{aligned} & z^{3}+3 z^{2}+p z+q=0 \\ & \Rightarrow 2 \mathrm{j}-2+3 \times 2 \mathrm{j}+p(1+\mathrm{j})+q=0 \\ & \Rightarrow(8+p) \mathrm{j}+p+q-2=0 \\ & p=-8 \text { and } p+q-2=0 \Rightarrow q=10 \end{aligned}$	M1 M1 A1 [6]	Substitute their α^{2} and α^{3} into cubic Equate real and imaginary parts to 0
8(ii)	$1-\mathrm{j}$ must also be a root. The roots must sum to -3 , so the other root is $z=-5$	B1 M1 A1 [3]	Results obtained correctly
8(iii)			Any valid method c.a.o.
		B2 [2]	Argand diagram with all three roots clearly shown; minus 1 for each error to minimum of 0 ft their real root

Section B (continued)			
9(i)	$(25,50)$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	
9(ii)	$\left(\frac{1}{2} y, y\right)$	$\begin{aligned} & \text { B1, } \\ & \text { B1 } \end{aligned}$	
9(iii)	$y=6$	[2] B1	
		[1]	
9(iv)	All such lines are parallel to the x-axis.	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	Or equivalent
9(v)	All such lines are parallel to $y=2 x$.	B1	
9(vi)	$\left(\begin{array}{ll} 0 & \frac{1}{2} \\ 0 & 1 \end{array}\right)$	B3	Or equivalent Minus 1 each error s.c. Allow 1 for reasonable
9(vii)	$\operatorname{det}\left(\begin{array}{ll} 0 & \frac{1}{2} \\ 0 & 1 \end{array}\right)=0 \times 1-0 \times \frac{1}{2}=0$ Transformation many to one.	[3] M1	attempt but incorrect working Attempt to show determinant $=0$ or other valid argument
		E2 [3]	May be awarded without previous M1 Allow E1 for 'transformation has no inverse' or other partial explanation
Section B Total: 36			
Total: 72			

